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1. Introduction. In Ll] Edmonds has given a proof of a theorem (Theorem 3.1 

below) characterizing those directed graphs that contain k mutually edge- 

disjoint branchings (spanning arborescences) having specified root sets. His 

proof is based on a complicated algorithm for constructing such branchings when 

they exist. While it is not known whether this algorithm is good (runs in 

polynomial time), Tarjan has described a conceptually simple and good algorithm 

for finding k mutually edge-disjoint branchings, when they exist CO. Tarjan's 

algorithm is based on a lemma (Lemma 2 of O]; slightly generalized below as 

Theorem 3.2) and network flow routines. Tarjan's proof of this lemma invokes 

Edmonds' theorem and algorithm; indeed, as Tarjan notes, his lemma is implicit 

in Edmonds' results. This poses the problem, pointed out by Tarjan in [U], of 

finding a simple direct proof of his lemma, ore that avoids invoking Edmonds' 

theorem and its complicated algorithmic proof. The purpose of this note is to 

give such a proof, thereby providing a simpler proof of Edmonds' theorem and a 

simpler proof that Tarjan's algorithm works. 

2. Definitions and notation. A directed graph G = [V,E] consists of a finite 

set of vertices V and a finite set of edges E such that each edge e e E 

has a head h(e) e V and a tail t(e) e V. Ue sometimes denote an edge e by 

the ordered pair (t(e),h(e)), even though there may be multiple edges in G 

having the same tail and head. A subgraph G' = [V^E'] of G is a directed 

graph having vortex-set V c V and edge-set E' c E such that for all e c E', 

we have t(e) e V and h(e) e V. A directed path in G from u e V to 

v e V is a sequence u = t(e1), e , h(e ) = t(e ), e ,...,h(e ,) = t^)» en' 

h(e ) = v, composed alternately of vertices and edges of G. A vertex u is 

itself a directed path from u to u having no edges. 

*■■-" "' •■' ' "--"•■ " i ■  ' —-  " ■         i    i ■ imät 
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For any non-empty subset R of vertices of G, a branching B of G, 

rooted !!. R, is a subgraph of G such that for every vertex v of G, there 

is precisely one directed path in B from a vertex in R to v. 

For any X ~ V, let 

6 ~ (X) = ( e c E : t ( e ) c X and h ( e ) c X = V - X} , 

6 ~ (X) = { e £ E : h ( e ) c X and t (e) £ X = V - X} • 

For X ~ V, Y ~ V, we use the notation 

(X,Y) = {e £ E: t(e) c X, h(e) c Y}. 

Thus 6~(X) = (X,X), 6~(X) = 

the set 6~(X) = 6~(X) = (X,i) 

from any vertex y c X; i.e., 

contains at least one edge of 

If S is a set, we let 

(X,X). If X is a non-empty proper subset of V, 

is a cut in G; it separates any vertex x c X 

any directed path in G from x £ X to y £ X 
+ 6G(X). 

lsi denote the cardinality of s. As above, we 

use the symbol "C" for set inclusion; henceforth we use "C" for proper 

inclusion. 

3. Main theorems. Let G = [V,E] be a directed graph with designated non-

empty root-sets R1 ,R2, •.. ,~, and suppose that G contains k mutually 

edge-disjoint branchings B1 ,B2, ••• ,Bk' where Bi is rooted at R1, 

i = l,2, ••• ,k. Then it is clear that for every proper subset X of V, we 

must have 

I6~(X)I > IU: 1 < i < k and R1 ~ X}l. 
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Theorem 3.1 (Edmonds).    For any directed graph    G = [V,E]    and any sets 

Ri'    I'^R
JE

V
'    ^-l^-f.14'    there exist mutually edge-disjoint branchings 

^    ^ i ^ 1 k»    rooted respectively at    R.,    if and only if, for every proper 

subset    X    of   V,    we have 

(3.1) |6*(X)|  >  |{i:  1 < i < k    and    I^CX}]. 

Theorem 3.2. Suppose given a directed graph G = [V,E] and a class of 

non-empty subsets R,R2....,IL  of V such that (3.1) holds for all X ^ V. 

Let B = [V ,E ] be a subgraph of G such that R C V  and on the subgraph 

G' = [V.E-E^ we have 

(3.2) l6Qt(X)| > |{i: 2 < i < k and R. CX}|,  all X ^ V. 

Then if V1 / V, there is an edge e* e 6*(V ) and for all X ^ V, 

(3.3) e* e ^,(X) =*>   |6*,(X)| > |{ir 2 < i < k and R. C X}| + 1. 

In applying Theorem 3.2 and Tarjan's algorithm to prove Theorem 3.1, the 

subgraph B  of Theorem 3.2 would be taken to be a branching rooted at R1 

of some subgraph of G.  In this instance, Theorem 3.2 reduces to Lemma 2 of [«+], 

1. Proof of Theorem 3.2. We begin the proof of Theorem 3.2 with some pre- 

liminary lemmas. It is convenient first to extend G by adding a "source" 

vertex s and vertices r.. ,r9,... ,r,  corresponding to the root-sets 

R. ,R_,... ,R, . We also add the edges (s,r.), together with the sets of edges 



(ri,Ri), i = l,2,..,,k, thereby obtaining an enlarged directed graph H = [N,A] 

containing G as a subgraph. Note that all edges joining N-V and V in H 

are directed into V, i.e.  (V, U-V) = 0.  Corresponding to the subgraph 

B. = CVI'EJ] of; G there is an "s-rooted subgraph" B  of H having vertex- 

set Vj^ Ü {s.r^} ard edge-set A = E. ü (s.r ) U (r .R.); hence, corresponding 

to the subgraph G' = [V, E-Ej^]  of G there is the subgraph H' = [N, A-A^ 

of H. 

Lemma 4.1. Condition (3.1) implies that there are at least k mutually 

edge-disjoint directed paths in H from s to v, for all v e V. 

Proof. By the max-flow min-cut theorem and the integrity theorem for 

network flows [2], it suffices to show that if (S,N-S)  is a cut in H 

separating s from v, then |(S,N-S) = |öu(S)| > k.  Let (S, N-S)  be 

a cut in H with s e S, v e N-S = S. Let R = {r ,r2,... ,r. }. We may 

partition (S,S) as follows: 

c+.i)     (sj) = (G, R n s) u (R n s, v n s) u (v n s, v n s). 

Suppose R, t. S. Then either r. i  S, in which case (s,r.) e (s,R f) S), 

or r, e S and there is a vertex u e R. fl S, in which case 

(r.,u) e (R fl S, V fl S). Thus 

(4.2) |(s, R n S) U (R fl S, V fl S)( > |{i: 1 < i < k and R. QfS}|. 

Since v e V 0 S, we have V OS c V, and hence condition (3.1) implies 

(4.3) |(V fl S, V ft S)| > |{i: 1 < i < k and R. CS}|. 
i — 



It follows from (U.l), (U.2), and (i+.3) that    |(S,S)|  >^k,    as was to be shown. 

A similar proof establishes 

Lemma 1.2.    Condition (3.2) implies that there are at least    k-1    mutually 

edge-disjoint directed paths in    H'    from    s    to   v,    for all    v c V. 

We next state two lemmas that are valid for any directed graph with 

"source"    s.     (Later on they will be applied to the directed graph    H'.)    While 

these lemmas can be found in a recent paper by Lovasz [3], they are consequences 

of well-known results in network flow theory.    In particular, the second of 

the two (Lemma 1.4 below) is stated explicitly in [2, Chap.   I].    We describe 

these lemmas as in [3], using the following definition.    In a directed graph 

H = [N,A]    with "source"    s e N,    let    m(s,x)    denote the maximum number of 

mutually edge-disjoint directed paths from    s    to   xv    for    x c N-{s}.    Say 

that a set    X C N - {s}    is regular with core    x    if   x e X    and   m(s,x) = 6'(X). 

(In other words,    X    is the "sink" set of a minimum cut    (X,X)    separating 

s c X    from    x e X    in   H.) 

Lemma 1.3.    If   X    and    Y    are regular sets with cores    x   and    y,    respec- 

tively, and if    x e Y,    then    X H Y, X U Y    are regular with cores    x, y, 

respectively. 

Lemma 1.I.    For each vertex   x / s,    there is a regular set    T      with 

core    x    such that whenever    X    is a regular set with core    x,    then    T   £ X. 

We continue with the proof of Theorem 3.2.    Suppose that  (3.1) and (3.2) 

hold, but that  (3.3) does not hold.    Let    e.,    j E J,    be an enumeration of 

the edges of    G    comprising the set    "MV,)-    Thus for each    e. e 5G(V )    there 

is a set    S.  ^ V    such that    e.  e 5*,(S.)    and 

. ■iiii.i.iiii»iiir..nir.i   -   . . ■,.—.,,,„.,„ , ..., ■ .      ,     ■ ,..-   .1  .n i.n.-,   11   1-11111 -i    |[   ■ '    »id 
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|6"I;,(S.)|  <   |{i:  2 < i < k    and    R. CS.}|  + 1. 1   G'     3   '        ' —     — i -    ]   ' 

Combined with  (3.2), this yields 

(U.U) l^,(S.)|   =   |U:   2 < i < k    and    R. CS.}I 
b ] —        — I—] 

for all    j e J. 

We want to work with the enlarged directed graphs    H    and    H',    rather 

than    G    and    G'.     Hence we define 

(4.5) T.   = S.   U {s} U {r.:   R.  CS.}, 

It  follows that 

(U.6) |«J,(T.)|  = k-1,    j  e J. 

To see this, note first that if R. (tS., then r. ^ TJ . and hence 

(s,r.) e 6U.(T.), whereas no edge e of H' with tail t(e) = r. belongs 
In] l 

to 6u,(T.). On the other hand, if R. CS., then no edge incident to r. 
H  j 1—3 1 

belongs to 6* (T.). Thus 

l«u,(T,)| = |ör,(S.)| + |{i: 2 < i < k and R. JCS.)|, 
H3      ^»3 —  —        i ~ 3 

By (U.4), we have 

|6^,(T.)I = Ui: 2 < i < k and R. CS.| + |{i: 2 < i < k and R. £S.)\ 

= k-1. 

- 
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verifying C+.G). 

Since s e T. and h(e.) e f. = N - T., the set 6* (T.) is a cut in 

H' of size k-1 separating s and h(e.), for all j e J. Lemma U.2 

thus implies that T. is regular with core h(e.). Using Lemma H.'*, we may 

assume that T. is minimal with core h(e.). (Note that with this assumption, 

we still have e. e ö" (f.).) 

Lemma 4.5. Let the sets T. be minimal regular sets in H' with cores 

h(e.), j e J. Suppose that j,Ä e J with h(e ) e f.. Then f cf . If 

T£ cf., then h(e ) i  f£. 

Lemma U.5 follows from Lemma U.3, since if f  and f. are regular with 
*    i 

cores h(e ) and h(e.), respectively, and if h(e ) e f., then f 0 f. 

is regular with core h(e ). Since f  is minimal with respect to this 

property, we have f cf 0 f., and hence f C f.. If this inclusion is 

proper and if h(e.) e T , then T  would be regular with core h(e.), contra- 
J    *       * j 

dieting the minimality of f.. Thus if f CT., then h(e.) ^ f . 

V/e apply Lemma 4.5 repeatedly to prove the next lemma. 

Lemma 4.6. Let the sets T. be minimal regular sets in H' with cores 

h(e.), j e J. There is at^ least one jft e J such that if j e J and 

h(e.) e T.,.., then T. = T.. 

To prove this lemma, select any    j    c J.    Define    J    = {j  e J: h(e.) e T.  }. 
0 u ^   ■'o 

If for all j E J-, we have T. = T. , then take j5'« = j„. Otherwise, there J   0' ]   ]0' 
J0 

is a ii e J0 such that T. / T. , in which case Lemma 4.5 asserts that 
1    0 

T. CT. , h(e. W T. . Define J = {j e J: h(e.) e T }. If for all j e J , 
^l   ^0    ^O    ^l D    •'l 

we have T. = T. , then take j* = j . Otherwise, there is a j9 e J  such 

that f. ^ f, , in which case Lemma 4.5 asserts that f. C f. , h(e. ) t f.   . 
32   Jj 32   :,1    :,1    :,2 

..-  _            ■   im-'' "■ — 



Define    J2 =  {] e J:  h(e  ) e T    },    and so on.    Since    f.    3 f.    3 f.    3..., 

we must eventually find a    j*    satisfying the conclusion of the lemma. 

We show next that    TjsV (\ V1  =  0.    To this end we examine the set of edges 

(Tj* ri V V'V    in    "'•    SuPPose first that    (T.^ 0 V^ f ft - V ) ?f 0.    In 

this  case there is an edge    e    with    t(e) c fjÄ .'I Vr    h(e) t f^-V^    and hence 

e    is one of the edges    e..    j e J.     Since    hCeJef.,,,    Lemma <4.6 implies 

T.  = T.,..    But we have    tCe.) t f.,    t(e.) e fjft,    contradicting    f.  = fjft. 

Thus     (Tjft nV1, fjft-V1) = 0.    But then    Tjft - V1    is regular with core    h(e.sV) 

and hence, since    f..,    is minimal with respect to this property, we must have 

TjÄ = ^jÄ-7!'    which implies    f.... fl V    = 0. 

Thus we have established the existence of    j^eJ    and    f..     suchthat 

(U.7) 
iv<V)i= k"1 and Tjft nvi= iz' 

It follows from (U.7) that 

(U.8) l^ft)!  =   löH'(fi*>l  s k"1- 

Thus (T.:..,t....) is a cut in H separating 9 from h(e,.,.) e V having only 

k - 1 members, contradicting Lemma U.l. Hence our assumption that (3.3) does 

not hold is untenable. This completes +hf  proof of Theorem 3.2. 
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